Targeting TRPML3 inhibits proliferation and invasion, and enhances doxorubicin sensitivity by disrupting lysosomal acidification and mitochondrial function in triple-negative breast cancer. Gomes GMA, Xu M, Syeda AKR, Raudonis R, Almasi S, Vijayan VV, Gujar S, Dong X, Cheng Z, Pulinilkunnil T, El Hiani Y. Biochim Biophys Acta Mol Cell Res. 2025 Aug;1872(6):119979. doi: 10.1016/j.bbamcr.2025.119979. Epub 2025 May 8. PMID: 40348344.
TNBC remains the most aggressive and therapy-resistant type of breast cancer, for which efficient targeted therapies have not been developed yet. Here, we identified TRPML3 (ML3) as a potential therapeutic target in TNBC. Our data showed that ML3 is significantly upregulated in TNBC cells compared with nontumorigenic control cells. ML3 knockdown (KD) impairs TNBC cell proliferation by inducing cell cycle arrest and caspase-dependent apoptosis. ML3 KD also inhibits TNBC cell migration and invasion. Mechanistically, ML3 KD reduces lysosomal number and enhances lysosomal acidification, which in turn activates mTORC1, thereby inhibiting autophagy initiation and flux. This disruption negatively impacts mitochondrial function, as evidenced by reduced ATP production, increased ROS and NO production, and mitochondrial fragmentation. Importantly, ML3 KD enhances TNBC cell sensitivity to doxorubicin and paclitaxel. The finding suggests that targeting ML3 disrupts lysosomal and mitochondrial homeostasis and enhance chemosensitivity, presenting ML3 as a potential therapeutic vulnerability in TNBC enhancing chemosensitivity.