Serum Autotaxin/ENPP2 Correlates with Insulin Resistance in Older Obese Humans. Reeves VL, Trybula JS, Wills RC, Goodpaster BH, Dubé JJ, Kienesberger PC, Kershaw EE. Obesity (Silver Spring). 2015 Dec;23(12):2371-6.

OBJECTIVE:

Autotaxin (ATX) is an adipocyte-derived lysophospholipase D that generates the lipid signaling molecule lysophosphatidic acid (LPA). The ATX/LPA pathway in adipose tissue has recently been implicated in obesity and insulin resistance in animal models, but the role of circulating ATX in humans remains unclear. The aim of the present study was to determine the relationship between serum ATX and insulin resistance.

METHODS:

Older (60-75 years), nondiabetic human participants with overweight or obesity (BMI 25-37 kg m(-2) ) were characterized for metabolic phenotype including measures of energy, glucose, and lipid homeostasis. The relationship between serum ATX and metabolic parameters was then determined using correlative and predictive statistics.

RESULTS:

Serum ATX was higher in females than in males. After controlling for sex, serum ATX correlated with multiple measures of adiposity and glucose homeostasis/insulin action. Serum ATX and BMI also independently predicted glucose infusion rate during a hyperinsulinemic euglycemic clamp and homeostatic model assessment of insulin resistance after controlling for sex and medication use.

CONCLUSIONS:

Serum ATX correlates with and predicts measures of glucose homeostasis and insulin sensitivity in older humans, suggesting that it may be a potential pathogenic factor and/or diagnostic/therapeutic target for insulin resistance in this population.

Read full article

Serum autotaxin is independently associated with hepatic steatosis in severely obese women. Rachakonda VP, Reeves VL, Aljammal J, Wills RC, Trybula JS, DeLany JP, Kienesberger PC, Kershaw EE. Obesity (Silver Spring). 2015 May;23(5):965-72.

OBJECTIVE:

Autotaxin (ATX) is an adipocyte-derived lysophospholipase that generates the lipid signaling molecule lysophosphatidic acid (LPA). The aim of this study was to determine the relationship between serum ATX and nonalcoholic fatty liver disease (NAFLD) in females with obesity.

METHODS:

101 nondiabetic women with obesity (age: 31.5-55.8 years; BMI: 35.0-64.5 kg/m2) were classified as having NAFLD (36.3%) or not having NAFLD (63.7%) based on the degree of hepatic steatosis on abdominal CT. Subjects were characterized for metabolic phenotype including measures of energy, glucose, and lipid homeostasis. Fasting serum adipokines and inflammatory markers were determined by ELISA. Linear regression analysis was used to determine features independently associated with NAFLD.

RESULTS:

Subjects with and without NAFLD differed in several key features of metabolic phenotype including BMI, waist circumference, fasting glucose and insulin, HOMA-IR, VLDL, triglycerides, and ALT. Serum adipokines, including ATX and leptin, were higher in subjects with NAFLD. Serum ATX was significantly correlated with alkaline phosphatase, fasting glucose, fasting insulin, and HOMA-IR. Linear regression analysis revealed that serum triglycerides and log-transformed ATX were independently associated with hepatic steatosis.

CONCLUSIONS:

Serum ATX may be a potential pathogenic factor and/or biomarker for NAFLD in nondiabetic women with obesity.

Read full article

Impact of reduced ATGL-mediated adipocyte lipolysis on obesity-associated insulin resistance and inflammation in male mice. Resistance and Inflammation in Male Mice. Schoiswohl G, Stefanovic-Racic M, Menke MN, Wills RC, Surlow BA, Basantani MK, Sitnick MT, Cai L, Yazbeck CF, Stolz DB, Pulinilkunnil T, O’Doherty RM, Kershaw EE. Endocrinology. 2015 Oct;156(10):3610-24.

Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.

Read full article

Skeletal muscle AMPK and ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. O’Neill HM, Lally JS, Galic S, Pulinilkunnil T, Ford RJ, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR. Physiol Rep. 2015 Jul;3(7). pii: e12444.

During submaximal exercise fatty acids are a predominant energy source for muscle contractions. An important regulator of fatty acid oxidation is acetyl-CoA carboxylase (ACC), which exists as two isoforms (ACC1 and ACC2) with ACC2 predominating in skeletal muscle. Both ACC isoforms regulate malonyl-CoA production, an allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT-1); the primary enzyme controlling fatty acyl-CoA flux into mitochondria for oxidation. AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is activated during exercise or by pharmacological agents such as metformin and AICAR. In resting muscle the activation of AMPK with AICAR leads to increased phosphorylation of ACC (S79 on ACC1 and S221 on ACC2), which reduces ACC activity and malonyl-CoA; effects associated with increased fatty acid oxidation. However, whether this pathway is vital for regulating skeletal muscle fatty acid oxidation during conditions of increased metabolic flux such as exercise/muscle contractions remains unknown. To examine this we characterized mice lacking AMPK phosphorylation sites on ACC2 (S212 in mice/S221 in humans-ACC2-knock-in [ACC2-KI]) or both ACC1 (S79) and ACC2 (S212) (ACC double knock-in [ACCD-KI]) during submaximal treadmill exercise and/or ex vivo muscle contractions. We find that surprisingly, ACC2-KI mice had normal exercise capacity and whole-body fatty acid oxidation during treadmill running despite elevated muscle ACC2 activity and malonyl-CoA. Similar results were observed in ACCD-KI mice. Fatty acid oxidation was also maintained in muscles from ACC2-KI mice contracted ex vivo. These findings indicate that pathways independent of ACC phosphorylation are important for regulating skeletal muscle fatty acid oxidation during exercise/muscle contractions.

Read full article